重点研究プロジェクト(Ⅱ期)知財公開用情報

	■ 重点研究プロジェクト(Ⅱ期)知財公開用情報 T
発明の名称	二酸化バナジウムの製造方法及び他元素ドープされた二酸化バナジウムの製造方法
登録(出願)日	2017年2月27日
 登録(出願)番号	特願 2017-034662
	 【課題】製造工程が単純で工程数が少なく、焼成や加熱等の熱エネルギーを与える工程が不要であ
要約	り、製造コストも低廉な二酸化バナジウムあるいは他元素ドープされた二酸化バナジウムの製造方
	法を提供する。
	【解決手段】五酸化バナジウムと 、パラフィンワックスとを 30 : 1 の重量割合で秤取り、遊星ボ
	ールミルによる摩砕を行った。摩砕工程 了後、摩砕物をふるいにかけて摩砕粉とボールを分離し、
	分離した摩砕粉をヘキサンで洗浄し、固液分離し。二酸化バナジウム粉末を得た。
	方服とた事件初を、キャラとがなる、固成力服と。二般にバアラウム初末を持た。 有用な材料として注目されているが、製造が難しい二酸化バナジウムの簡便な製造方法及び他元素ドー
特徴/ セールスポイント	有用な材料として注目されているが、製造が無しい一般にバナジウムの間便な製造方法及び他元素ドー プされた二酸化バナジウムの製造方法に関する発明である。具体的には室温かつ大気圧下における乾
	プライルに二酸化パナダウムの製造方法に関する発明である。具体的には至温がプス気圧下における乾 式ミル処理によるメカのケミカル効果を利用しており。これまで必要だった雰囲調整が必要な高温焼成炉
	やその高度なオペレーションが不要であり。特別な設備が不要でかつ省エネ、低コストで V₂O₅ から VO₂を 得ることができる。
主な応用分野	二酸化バナジウム (VO ₂) は、周囲温度(約 68°C)において単斜晶系の結晶相から正方晶系の結晶相に
	相転移する(金属一絶縁体転移 (MIT) あるいは Mott 縁体相転移と言われる現象)特異な性質を有して
	いる。また、二酸化バナジウムに4f 電子を有する金属(例えばW, Mo 等)を添加することにより、相転移
	温度を制御することも可能となる。二酸化バナジウムは蓄熱材料、調光材料、感熱センサー、電気・光ス
	イッチなど energy management 分野や optoelectronics 分野で注目されている。
開発状況	V ₂ O ₅ から VO ₂ を得るメカのケミカルの操作因子については検証済みである。具体的には助剤となるパラフ
	ィンと原材料の量比とミルの操作パラメーターである。また、相転移前後の構造確認と相転移熱量につい
	ても明元点が、同純及でのも試来 VO2 と同等であるこが推議できている。
参考する写真等	下図は市販試薬である VO2と本発明により得たサンプルの熱量の比較である。原料である V2O5と助剤で
	あるパラフィンの重量比が30:1の場合、熱量は試薬に匹敵する。
	(降温)
	(昇温)
	$(V_2O_5:PW=30:1)$ $(V_2O_5:PW=30:1)$
	i (V ₂ O ₅ : PW=20:1)
	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$
	(V ₂ 0 ₅ :PW=20:1)
	市販VO2
	V
	10 30 50 70 90 110 10 30 50 70 90 110 Temperature / °C
特許権者(出願人)	国立大学法人名古屋工業大学

機関名:国立大学法人名古屋工業大学

部署: 先進セラミックス研究センター

問い合わせ先 担当者名:藤 正督

電話:0572-24-8110

e-mail :fuji@nitech.ac.jp